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On the Use of Nonparametric ICC Estimation Techniques 

For Checking Parametric Model Fit 

 

Abstract 

This study had two purposes, 1) to investigate the performance of three nonparametric 

ICC estimation procedures relative to a two parameter logistic (2PL) model using marginal 

maximum likelihood estimation (MMLE), both visually and numerically, and 2) to develop a 

statistical test for assessing the model fit of the 2PL by comparison with the nonparametric 

ICC estimation procedures.  A simulation study was conducted to investigate these issues.  

Results from root integrated squared error (RISE) and mean absolute deviation (MAD) 

confirmed that the 2PL MMLE and smoothed isotonic regression estimation are 

comparatively good for ICC estimation when the items fit an underlying 2PL model.  The 

smoothed isotonic regression estimation procedure employed with an appropriate kernel 

function, however, provided the best fit for non-model fitting items.  In particular, smoothed 

isotonic regression yielded the smallest RISE and MAD values, while also satisfying the 

assumption of monotonicity.  As the number of items and the sample size increased, the 

differences among the nonparametric ICC estimation procedures became less pronounced.  

The Type I probabilities of the statistical test for model fit were very close to those expected 

for all sample sizes and test lengths.  Power to detect items not fitting the 2PL was best for 

the smoothed isotonic regression method, but was very good for all three nonparametric ICC 

methods in all conditions studied.   
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Purpose 

Many educational testing programs rely on item and ability calibration algorithms that 

are rooted in item response theory (IRT).  IRT includes a family of models which, if 

appropriate, provides substantial information about item and examinee performance.  

However, often overlooked is the fact that IRT is premised on some rather strong 

assumptions, namely unidimensionality and local independence (LI).  In addition, an 

assumption inherent in nonparametric IRT (NIRT) and often made in parametric IRT (PIRT) 

is that of monotonicity.  Therefore, for situations where monotonicity is assumed in PIRT, the 

only difference between PIRT and NIRT pertains to the relationship between the probability 

of correct response, )(θP , and examinee ability, θ .  In PIRT, this relationship, given by the 

item characteristic curve (ICC; item response function (IRF)), is assumed to be of a pre-

specified form that is either logistic or normal ogive.  In practice, however, IRT assumptions 

are often violated – a result that can cause poor estimation of item parameters and examinees’ 

ability.   

Model-based PIRT models are desirable when the model fits the data.   Recently, 

however, it has increasingly come to be recognized that ICCs cannot always be modeled well 

within the PIRT models such as the two- or three-parameter logistic or normal ogive models 

(Douglas, 1997, 1999; Ramsay, 1991, 1995).  Also, it has become essential to check the 

appropriateness of the modeling of PIRT.  As a result, many researchers have begun to 

explore the use of NIRT models (Mokken 1971; Mokken & Lewis, 1982; Sijtsma & 

Molenaar, 1987) for estimating ICCs without restricting them to assume any particular 

parametric form (Ramsay, 1988, 1991; Ramsay & Abrahamowicz, 1989; Ramsay & 

Winsberg, 1991).  Accordingly, many attempts have been made to test the goodness-of-fit of 

PIRT models (Kingston & Dorans, 1985; Stone, 2000; Fischer & Molenaar, 1995).  Stone 



 Nonparametric test of parametric model fit   4

(2000) has studied a goodness-of-fit test statistic based on the χ2 distribution in PIRT using a 

Monte Carlo resampling procedure.   

To date, the use of nonparametric regression approaches in checking the fit of PIRT 

models has not been fully investigated.  Douglas and Cohen (2001) used kernel smoothing to 

investigate the fit of PIRT models by comparing them to models fitted under nonparametric 

assumptions.  It was shown that a nonparametric ICC estimation technique was able to 

capture the irregularity of parametric ICC with sufficient flexibility.  However, because 

kernel smoothing relies on local averaging, this estimation technique may not result in a 

monotonically increasing ICC, thereby violating a common IRT assumption.  One method for 

fitting nonparametric ICCs which satisfies the monotonicity assumption is through isotonic 

regression (Barlow, et al., 1972; Lee, 2002).  However, the quality of fit of ICCs based on 

isotonic regression estimates has not been evaluated. 

In this paper, we are concerned with the use of nonparametric ICC estimation 

techniques to assess the fit of PIRT models, via graphical inspection as well as through 

numerical measures.  We checked the structural departure from PIRT models by comparing 

the fit of the two-parameter logistic model (2PL) with three different nonparametric ICC 

estimation procedures:  isotonic regression, smoothed isotonic regression, and kernel 

smoothing ICC estimates.   

 

Nonparametric ICC Estimations 

A nonparametric approach to estimating ICCs requires no mathematical model.  In 

addition, no assumptions of any particular parametric forms of the ICCs are made in the 

estimation.  Nonparametric approaches have been found to be more flexible in analyzing 

unknown curves and providing a better fit between dependent and independent variables than 
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parametric procedures.  In this paper, three nonparametric regression techniques are studied:  

kernel smoothing, isotonic regression, and smoothed isotonic regression.  

 The most commonly used approach for nonparametric ICC estimation is kernel 

smoothing, made popular because of its ease of use and computational convenience (Eubank, 

1988).   Kernel smoothing is based on local averaging which uses the mean of the response 

variables near a certain point as a representative point and produces reasonable 

approximations to the regression curve.  In the context of IRT, Ramsay (1991) described 

kernel smoothing approaches in estimating dichotomous item response functions.  The kernel 

estimate of the ICC, )(kernel, θiP
∧

, is given below:  
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where ijY is the response to item i for examinee j ( j = 1, …, N ); the kernel function )(xK , 

which is a nonnegative, continuous, and symmetric function, determines the shape of the 

distribution of kernel weights; and the bandwidth or smoothing parameter, h, indicates the 

size of the weights, controlling the amount of smoothing of the estimated regression function.  

The three common choices of kernel functions are the uniform ])11[)(( ≤≤−= xIxK , 

quadratic )1for  1)(( 2 ≤−= xxxK  , and Gaussian ))2/exp()(( 2xxK −= .   

Since the examinee’s jθ  is unobservable and cannot be measured directly, it needs to 

be replaced with a reasonable estimator to determine how much weight is assigned to 

examinees j’s response to item i, Yik.  An effective substitute for jθ  can be obtained by 
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transforming each examinee’s number correct score once examinees are ranked into the 

percentiles of a given latent trait distribution, F (Ramsay, 1991).  For instance, when the 

standard normal distribution for the latent trait distribution, F, and the examinee’s total score 

at the 90th percentile were used, then jθ  would be set to 1.282 which is equal to the 90th 

percentile of the standard normal distribution.     

An important parameter, the smoothing parameter, h, is chosen by the user depending 

on the balance desired between bias and the variance of estimation, which are components of 

the mean square error (MSE) of the estimator in ICC estimation (Ramsay, 2000; Härdle 

1990).  The larger the bandwidth, the larger the bias and the smaller the sampling variance of 

the estimate.  Ordinarily, the bottom line in choosing the bandwidth is to minimize the MSE 

of the estimator.  In practice, it is recommended for researchers to select a bandwidth that 

produces a reasonable smoothness of the estimated function based on the empirical data-

driven approach.  The rule of thumb to choose bandwidth is recommended by letting h be 

proportional to n-1/5 which is set as a default value in the program TESTGRAF (Ramsay, 

2000). 

Under the constraint of monotonicity of ICCs, Lee (2002) proposed the use of isotonic 

regression-based estimates in ICC estimation, which were motivated from Barlow et al. 

(1972) and Robertson et al. (1988).  Isotonic regression is a least squares method for data 

fitting under order restrictions.  To say that the estimated function is isotonic implies that the 

functions chosen to fit the data are non-decreasing functions of the independent variable.  The 

isotonic regression for ICC estimation is defined as follows:  Let the examinees’ abilities 

follow the simple order, kθθθ ≤≤≤ ...21 .  Next, let )(θP  be any given function of θ, and let 

F be the collection of all isotonic functions of θ.  Then, )(* θP is the isotonic regression ICC 
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estimate of θ  if and only if )(* θP is isotonic and minimizes∑
∧

− 2)]()([ θθ PP , where )(θ
∧

P is 

a member of F.  Hence, )(* θP  holds the constraint )(...)()( *
2

*
1

*
kPPP θθθ ≤≤≤ .   

The most widely used solution for computing isotonic regression is the Pool-

Adjacent-Violators (PAV) algorithm (Barlow et al., 1972, p.13; Hanson, Pledger, and Wright, 

1973).  Isotonic regression solution via the PAV algorithm is obtained as follows:   

Step 1: Rank order the data ( )( , jj P θθ ) for all examinees by θ  into ( )( , )()( jj P θθ ). 

Step 2: Start with )( )1(θP , move to the right and stop if the pair ( )( ),( )1()( +jj PP θθ ) violates the 

monotonicity constraint.  Pool )( )( jP θ and the adjacent )( )1( +jP θ , and replace them both by 

their average:  
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Continue to the left, adding terms and averaging, until the monotonicity requirement is 

satisfied and then continue to the right.  The final solution is the isotonic ICC estimates.  

However, the resulting isotonic function may produce a step function (i.e., a level set) over 

the corresponding interval of ability if a small group of examinees was analyzed or 
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monotonicity in some )(θP  is violated because ICC probabilities were replaced by their 

averages.  Under such situations, isotonic regression ICCs are usually not very smooth, but 

they are non-decreasing functions.   

Smoothed isotonic regression ICC estimates are obtained by first isotonizing the data 

via the PAV algorithm and then smoothing the resulting isotonic regression function using a 

kernel function with an appropriate bandwidth (Lee, 2002).   The resulting ICC is generally 

smoother than that obtained using the isotonic regression ICC estimation.  

For this study, the bandwidth for kernel smoothing was selected as .4, .3 .2, and .1 for 

sample size 250, 500, 1000, and 2000, respectively.  The smaller bandwidth (i.e., half of 

kernel smoothing bandwidth) was used for smoothed isotonic regression because it was pre-

smoothed in some sense.  Also, a Gaussian kernel function was used for both kernel 

smoothing and smoothed isotonic regression estimation.   

 

Method 

Data Generation 

A simulation study was used to assess the accuracy of ICC recovery and model fit 

under various conditions of sample size and test length.  The data were generated with three 

sample sizes (N = 250, 500, 1000, and 2000 simulees), each under three test lengths (n = 20, 

40, and 80 items).  Both the two-parameter logistic (2PL) and the three-parameter logistic 

(3PL) models were used to generate the data for either model fitting or non-model fitting 

items.  For each test length, 20% of the items were simulated as non-model fitting items using 

3PL.  That is, the probability of a correct response for an examinee j on item i is given by 
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where ia , ib , and ci are the discrimination, difficulty, and pseudo-guessing parameters, 

respectively, for item i; jθ  is the ability level for examinee j; and 1.702 is the scaling factor 

used to transform the metric from logistic to normal.  The remaining 80% of the items were 

simulated to fit the 2PL (i.e., ci parameters were set to zero).   

 Generating item parameters were obtained from the estimated item parameters on a 

college-level Mathematics Placement Test using MULTILOG (Thissen, 1991).  Table 1 

includes the item numbers, the generating item parameters for the 40-item test, and indication 

of the items that were used for the 20-item condition.  In simulating misfitting (i.e., non-

model fitting) items with the 3PL, ci parameters were at least .23 for all misfitting items. 

-------------------------------- 

Insert Table 1 About Here 

-------------------------------- 

 

For the 80-item condition, the 40-item test was duplicated twice as a whole.  For the 20-item 

test, items 17-20 were the non-model fitting items and for the 40-item test, items 33-40 were 

the non-model fitting items.  For the 80-item test, items 33-40 and 73-80 were non-model 

fitting items.  The ability distribution was sampled from the standard normal distribution, 

)1 ,0(~ Njθ .  The program GENIRV (Baker, 1988) was used to simulate the item response 

vector for each condition of the study.  
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Goodness-of-Fit Measures  

The purpose of this study was to investigate the performance of three different 

nonparametric ICC estimation procedures -- isotonic regression, smoothed isotonic regression, 

and kernel smoothing -- under various simulation conditions and to assess the fit of 

parametric IRT models by comparing them to models fitted under nonparametric assumptions.  

This was done using a parametric bootstrap based on a selected parameter approximation to 

the nonparametric ICC to generate a reference distribution for testing the fit of the 2PL 

MMLE ICCs.   The evaluation of the fit of the nonparametric ICC estimation procedures was 

broken down into three steps:  inspecting ICCs, measuring the distance between ICCs, and 

testing for goodness-of-fit.  These three procedures are discussed next. 

Inspecting ICCs 

For a graphical representation of the results, we plotted each nonparametrically 

estimated ICC, ikernel,P
∧

, i isotonic,P
∧

, and iisotonic,-smoP
∧

 (kernel smoothing, isotonic regression, and 

smoothed isotonic regression, respectively),  and the parametrically-estimated 2PL ICC, 

)(,2 θiPLP
∧

, along with the generating )(θiP .  This provided a rough sense of whether the 

parametric and nonparametric ICCs were sufficiently similar to the true ICC for model fitting 

and non-model fitting items.   

Measuring the distance between ICCs  

The distance between the estimated ICCs and the underlying true (i.e., generating) 

ICC was used to assess the quality of estimates of the different IRT estimation techniques.  

Although many choices are available to measure the distances between ICCs, we calculated 

two measures, the root integrated squared error (RISE) and the mean absolute deviation 

(MAD) as indices of estimation precision.  RISE, employed in Douglas & Cohen (2001), is 

computed as follows: 

 



 Nonparametric test of parametric model fit   11

RISE = ,)(])()([),( 2 θθθθ dfPPPPd ∫
∧∧

−=  

 

where ),(
∧

PPd  is a measure of the distance between the true and estimated ICCs (i.e., kernel 

smoothing, isotonic regression, smoothed isotonic regression, and 2PL MMLE ICC 

estimates), and )(θf indicates the density function of an examinee’s ability.  For the purpose 

of this study, )(θf  was taken to be the standard normal distribution.  MAD is computed as 

follows: 

 

.)(  )()([  θθθθ dfPPMAD ∫
∧

−=  

 

Testing Goodness-of-Fit 

In practice, of course, one cannot know which items are fitting and which are non-

fitting.  However, if it can be demonstrated that the NIRT models provide more accurate 

approximations of the underlying ICCs, then the quality of fit of an estimated PIRT model 

can be assessed by comparing it with an estimated NIRT models, for each individual item.  

Using the bootstrapping procedures described in Azzalini, Bowman & Hardle (1989) and 

Douglas & Cohen (2001), an item-by-item test of goodness-of-fit for the parametric IRT 

model was performed as follows:  

 

Step 1 – Fit nonparametric estimates and find 2PL MMLE estimates with N ~ (0, 1) prior.  

Step 2 – Compute three different measures of the differences between the curves,  

   ),,( 2 nonparPLi PPd
∧∧

 for each of the three nonparametric methods from the data.  

Step 3 – Generate K datasets to obtain the reference distribution of test statistic, di, 
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     under the null hypothesis that the parametric model (i.e., 2PL) holds.  In order  

   to distinguish the “signal” from the “noise” in nonparametric regression  

   estimates, 30 replications were done to resample the data set (i.e., K = 30).  

Step 4 – For each of the K data sets, refit estimates and obtain the distribution of  

   departure measures ),( 2 nonparPL
K PPd
i

∧∧

 under the null hypothesis as in Step 1.  

Step 5 – Construct approximate t statistics to test the goodness of fit of each item.  For 

   this study, the critical value is set at 2.045  ≥t  at a significance level 05.=α  with 

   the degrees of freedom, 29=df , as a possible indicator of a poor fit.  

 

Results 

Visual inspection of the estimated ICCs 

Some exemplary nonparametric ICC estimates and 2PL MMLE estimates along with 

true underlying ICC are presented graphically in Figure 1 and Figure 2.  The shortest test 

length with the smallest sample size and the longest test length with the largest sample size in 

the study were chosen in Figure 1 and Figure 2, respectively, for diagnosing how 

nonparametric and parametric ICC estimates differ from the true underlying ICC from the 

impact of sample size and test length.  Also, for these two conditions, two model fitting items 

and two non-model fitting items were shown.  In each plot, the solid curve indicates the 

underlying true ICC and the dotted curve shows the kernel smoothing estimates.  Isotonic 

regression estimates are plotted with the combination of dot and dash curve, smoothed 

isotonic regression estimates are presented with dashed curves.  2PL ICC estimates are 

presented with the combination of multiple dots and dashed curves.  This item-by-item 

graphical inspection of ICC provides information as to how and where a selected parametric 

model (i.e., 2PL) does not fit an item.  For example, by virtue of the way item misfit was 

simulated, items 18 and 20 in Figure 1 and items 39 and 40 in Figure 2 fail to asymptote 
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properly to the correct value of )(θiP .  Thus, it is important to check how close the 

nonparametric ICCs and 2PL ICC are to the underlying ICC to determine the quality of 

estimates and the fit of an item.    

The overall patterns in the performance of the ICC estimation procedures were similar 

across all conditions.  It can be seen from these plots that, in general, for model fitting items, 

the fit of the nonparametric ICCs and 2PL ICC were fairly good.  The two isotonic regression 

estimation procedures appeared to have performed better than the kernel smoothing 

estimation at the upper and lower ends of the ability scale.  Kernel smoothing ICCs revealed 

somewhat larger discrepancies due to the failure of the method to accurately model the upper 

and lower asymptotes.  As was anticipated, the 2PL ICC estimates were the best 

approximation to the underlying ICCs for model fitting items.  For non-model fitting items in 

each simulation condition, however, nonparametric ICC estimates produced better 

approximations to the corresponding underlying ICCs than the 2PL ICCs especially when the 

sample size was large.  The fit of the smoothed isotonic regression ICC estimates to 2PL was 

the best with large sample sizes.  In general, fit for all methods was improved as sample size 

increased.  Visual inspection did not reveal a clear effect of test length.   

 

Measures of distance between ICCs  

1.  RISE 

The measure of RISE for three nonparametric estimation and 2PL MMLE 

procedures is presented in Table 2.  Table 2 contains the marginal average, minimum, 

and maximum of RISE values for model fitting and non-model fitting items separately 

across each simulation condition.    

For model fitting items, the average of RISE ranged from .017 to .073 for the 

small sample sizes (i.e., 250 and 500 examinees condition) and ranged from .015 
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to .046 for the large sample sizes (i.e., 1000 and 2000 examinees condition).  The 

smallest average RISE was obtained from the 2PL MMLE while the largest average 

RISE was found from the isotonic regression estimation.  Looking at the maximum 

values of RISE, all RISE values were less than .121 for the 250 examinees condition 

and less than .096 for the other sample size conditions.  RISE values decreased as the 

sample size increased.  Also, they decreased as the test length increased except in the 

isotonic regression with 500 examinees condition.  2PL MMLE procedure yielded 

smaller RISE values than the nonparametric ICC estimation procedures.  Among the 

nonparametric ICC estimation techniques, kernel smoothing and smoothed isotonic 

regression methods had smaller RISE values than isotonic regression.   

For non-model fitting items, the average value of RISE was anywhere 

from.031 to .072 for the small sample sizes and from .028 to .042 for the large sample 

sizes.  Similar to model fitting items, the smallest and the largest RISE values were 

found from the 2PL MMLE and isotonic regression estimation, respectively.  The 

largest RISE value (RISE = .103) was observed in the 250 examinee condition and all 

RISE values were less than .077 for the 500, 1000, and 2000 examinee condition.  

RISE values decreased as the sample size increased.  However, RISE values increased 

as the test length increased.  The smoothed isotonic regression estimation procedure 

produced consistently smaller values of the RISE among the nonparametric ICC 

estimation methods.  Both kernel smoothing and smoothed isotonic regression 

performed similarly with the same sample size and test length, showing the 

differences were negligible.  The differences between 2PL MMLE and the smoothed 

isotonic regression were all quite small, appearing primarily at the third decimal place 

(less than .01) for all conditions.  Especially, for 2000 examinees with 40-item and 
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80-item, the smoothed isotonic regression produced smaller values of the average 

RISE than 2PL MMLE.  

 

2.  MAD 

For each simulation condition, the MAD results for ICCs obtained from the 

nonparametric ICC estimation and 2PL MMLE procedures are summarized in Table 3.  

The marginal average, minimum, and maximum of MAD are presented for model 

fitting and non-model fitting items separately.   

In general, the kernel smoothing and smoothed isotonic regression procedures 

produced nearly the same pattern of measure of MAD for all conditions, although, 

MAD for the smoothed isotonic regression procedure was negligibly smaller.  

Between the two isotonic regression estimation procedures, the smoothed isotonic 

regression consistently provided smaller values of MAD than the isotonic regression 

estimation procedure regardless of the sample size, test length and types of items 

(either model fitting or non-model fitting).  Also, the 2PL MMLE yielded smaller 

MAD values than the three nonparametric ICC estimation procedures.  The values for 

the 2PL MMLE ranged from .014 to .30 compared to .023 to .059 for the 

nonparametric ICC estimation procedures.  Increasing sample size was associated 

with a decrease in values of MAD.  Increasing the number of items reduced the size of 

MAD for all three nonparametric ICC estimation procedures while the reverse was 

observed for the 2PL MMLE procedure.    

For model fitting items, the three nonparametric estimation procedures yielded 

somewhat similar MAD results where the smoothed isotonic regression produced 

apparently smaller MAD than the two other nonparametric estimation procedures with 

large sample sizes.  For non-model fitting items, all MAD values were less than .068 
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and decreased as the sample size increased.  Kernel smoothing and smoothed isotonic 

regression estimation procedures yielded nearly the same size of MAD for the large 

sample sizes.  Also, 2PL MMLE and the smoothed isotonic regression provided 

similar MAD values across the various sample size conditions.  The 2PL MMLE 

procedure, however, did exhibit slightly smaller values of MAD in the 250, 500, and 

1000 examinees condition compared to the smoothed isotonic regression estimation 

procedure.    

Test of Goodness-of-Fit 

1.  RISE 

Table 4 shows the results of goodness-of-fit for each condition of the study. 

To see the behavior of RISE measure, Table 4 also contains the summary statistics 

(i.e., mean and standard deviation) of RISE values for model fitting items and non-

model fitting items separately across each simulation condition.  The items with large 

RISE values show poor fit resulting in p-values < .05.   

For model fitting items, Type I probabilities were calculated separately for all 

sample size and test length conditions.  Across all conditions, Type I probabilities 

ranged from 0 to .125; most were less than .05.  For non-model fitting items, power of 

the NIRT procedures to detect misfit in the 2PL was 1.0 for all conditions, except the 

250 examinee condition.  Within this condition, as test length increased, the power of 

kernel smoothing increased.  Power in both the isotonic and smoothed isotonic 

regression methods increased from 20 to 40 items, but decreased from 40 to 80 items.  

Power for the 250 examinee condition ranged from .5 to 1.0 across all three NIRT 

estimation methods, which indicates good detection of non-model fitting items, even 

with relatively small samples.  Among the nonparametric ICC estimation procedures, 

isotonic regression-based estimates, and in particular, the smoothed isotonic 
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regression procedure, detected more non-model fitting items than did the kernel 

smoothing estimates, in the 250 examinee condition. With larger sample sizes, all 

three methods were equally good at identifying misfitting items.  

2.  MAD 

Table 5 shows the goodness-of-fit results for the MAD statistic for each 

condition in the study.  The items with large MAD values might show the misfit item, 

where p-values are less than .05.  In the same manner with RISE, Type I probabilities 

were calculated for model fitting items.  Type I probabilities did not show a consistent 

pattern as sample size and test length changed.  Type I probabilities were less 

than .0938 with the large sample sizes and were less .125 with the small sample sizes.  

For non-model fitting items, all three nonparametric ICC methods had a power of 1.0 

to detect misfitting items, except in the 250 examinee condition.  In that condition, the 

power of the three nonparametric ICC estimation methods ranged from .75 to 1.0, and 

generally increased as test length increased.   Power to identify misfitting items was 

higher using the MAD criterion than when using the RISE criterion.  Among the 

nonparametric ICC estimation procedures, in the 250-examinee condition, kernel 

smoothing and smoothed isotonic regression procedures detected more misfitting 

items than the isotonic regression method.  For sample sizes of at least 500 examinees, 

each of the three nonparametric methods identified all of the misfitting items. 

 

Conclusion and Discussion 

Results from this simulation study appear to have several implications for how 

practitioners use nonparametric ICC estimation methods to assess the fit of items when the 

underlying parametric model may not be appropriate for all items.  First, an item-by-item 

visual inspection of parametric and nonparametric ICCs provides a graphical representation 
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of misfitting items.  Visual inspection suggests that nonparametric ICC estimation techniques 

are very good at reproducing underlying ICCs for all items, while the 2PL often may not.  

Isotonic regression-based estimates were all monotonic, thereby satisfying the popular 

monotonicity assumptions of ICCs, and showed the capability of asymptotic behavior.  

Second, both RISE and MAD results indicated that the overall patterns in the performance of 

the three nonparametric ICC estimation and the 2PL MMLE procedures were similar across 

all simulation conditions.  In general, increasing the sample size decreased both RISE and 

MAD and increasing test length decreased both RISE and MAD.  For small sample size 

conditions, the 2PL MMLE estimates yielded smaller RISE and MAD than estimates from the 

three nonparametric regression estimation procedures, regardless of model fitting and non-

model fitting items.  For large sample size conditions, all three nonparametric ICC estimation 

procedures yielded comparatively similar RISE and MAD results for non-model fitting items.  

Third, with respect to goodness-of-fit test in terms of RISE and MAD, Type I probability and 

power for the nonparametric estimation methods were very close to those expected for all 

sample sizes and test lengths in both model fitting items and non-model fitting items.  Third, 

in terms of the factors influencing the fit of the items, increased sample size and test length 

should enhance the fit of ICC estimates for all methods.  It has been shown that estimating 

examinee’s ability, θ, on a short test length based on the total test score is less reliable than 

estimates based on total scores from long tests (Douglas & Cohen, 2001).  In addition, the 

result of this study showed that the smoothed isotonic regression estimation method provided 

a better fit than the kernel smoothing and isotonic regression estimation procedures at the two 

extremes of ability.   

Parametric ICC estimation procedures are very useful when the model assumptions 

hold, but it is not clear how robust parametric models are to violations of these assumptions.  

Nonparametric ICC estimation procedures have been shown to be a nice alternative to the 
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parametric approach in cases where monotonicity or model fit may not hold.  Therefore, 

before routinely fitting PIRT models to analyze test data, researchers should check the 

fundamental modeling assumptions to make sure they are appropriate.  In practice, 

monotonicity often does not strictly hold, which could cause serious estimation problems.   

The results in this study are, to a certain extent, a function of the way in which misfit 

was simulated.  Certainly there are other types of misfit, including non-monotone functions, 

or functions that do not have an easy-to-describe relationship between θ and )(θP .  This 

becomes important because, in practice, it is hoped that the 2PL would not be used for items 

with substantial lower asymptotes.  The advantages of NIRT procedures over  sophisticated 

PIRT models such as the 3PL or nominal response model (Bock, 1972) for other, perhaps 

more realistic, types of item misfit must continue to be studied.  Therefore, additional work 

related to other types of non-model fitting item can be extended to provide a general 

framework in the assessment of parametric item fit using nonparametric estimation 

procedures.   
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Figure 1. ) and ), ),( 2 (θP(PP PLnonpar

∧∧

θθ  for 4 items in 250 examinees and 20-item condition 
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Note: Items 8 and 13 are model fitting items and items 18 and 20 are non-model fitting items. 

 

_____________ True underlying ICC 

………………... Kernel smoothing ICC 

_ . _ . _ . _ . _ . _ .    Isotonic Regression ICC 

_ _ _ _ _ _ _ _ _  Smooth Isotonic Regression ICC 

_ … _ … _ … _ …  2PL ICC 
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Figure 2. ) and ), ),( 2 (θP(PP PLnonpar

∧∧

θθ  for 4 items in 2000 examinees and 80-item condition 

-2 -1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

8

-2 -1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

29

-2 -1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

39

-2 -1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

40

θ θ

θ θ

P(θ) P(θ)

P(θ) P(θ)

 

Note: Items 8 and 13 are model fitting items and items 18 and 20 are non-model fitting items. 

 

_____________ True underlying ICC 

………………... Kernel smoothing ICC 

_ . _ . _ . _ . _ . _ .    Isotonic Regression ICC 

_ _ _ _ _ _ _ _ _  Smooth Isotonic Regression ICC 

_ … _ … _ … _ …  2PL ICC 
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Table 1.  Generating item parameters and an indication of items used in 20-item test 

Item a b C Indication  Item a b c Indication
1 1.19 -1.52    21 1.36   -.35   
2 1.81   -.10    22 1.67   -.23   
3 1.13   -.30    23 2.04   -.13   
4 1.41   -.51    24   .98  2.21   
5 1.20    .41    25 1.48   .45   
6 1.03    .31    26 1.38   .32   
7 2.36   -.17    27   .85   .30   
8 1.14   -.05    28 1.29   .51   
9   .92   -.04    29 1.26  -.16   
10 1.54   -.25    30 1.49   .77   
11 2.01   -.57    31 1.35   .01   
12 1.51   .18    32   .69   .96   
13 1.89   -.64    33 1.35   .06 .27  
14 1.37   -.01    34   .89  -.76 .28  
15 1.86   .07    35 1.05   .31 .25  
16 1.61   -.22    36 1.58  .85 .25  
17 1.58   -.29    37 1.47 -.16 .25  
18 1.92   -.78    38 1.42 -.35 .24  
19 1.30   .54    39 1.20  .19  .23  
20 1.16   .77    40 1.37  .64 .34  
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Table 2.  RISE 
 

  2PL MMLE Kernel Smoothing Isotonic Regression Smooth Isotonic Regression 

N n Model 

Fitting

Min. 

Max. 

Nonmodel 

 Fitting 

Min. 

Max.

Model 

Fitting

Min. 

Max.

Nonmodel 

Fitting 

Min. 

Max. 

Model 

Fitting

Min. 

Max.

Nonmodel 

Fitting 

Min. 

Max.

Model 

Fitting

Min. 

Max. 

Nonmodel  

Fitting 

Min. 

Max. 

250 20 .035 .006 
.071 

.050 .033 
.066 

.061 .033 
.092 

.060 .043 
.083 

.073 .043 
.105 

.064 .043 
.083 

.053 .033 
.080 

.051 .040 
.063 

 40 .033 .008 
.081 

.051 .031 
.069 

.063 .034 
.107 

.057 .029 
.077 

.069 .041 
.099 

.072 .050 
.103 

.050 .026 
.087 

.053 .029 
.078 

 80 .033 .001 
.089 

.045 .028 
.068 

.057 .021 
.121 

.053 .024 
.076 

.070 .042 
.107 

.063 .050 
.093 

.048 .017 
.097 

.050 .027 
.068 

500 20 .028 .007 
.070 

.031 .015 
.046 

.056 .029 
.088 

.043 .021 
.057 

.058 .039 
.096 

.047 .032 
.061 

.043 .017 
.085 

.034 .018 
.052 

 40 .019 .005 
.052 

.042 .026 
.063 

.044 .024 
.086 

.047 .025 
.063 

.053 .038 
.070 

.056 .043 
.068 

.039 .022 
.060 

.044 .032 
.057 

 80 .017 .005 
.065 

.035 .013 
.064 

.045 .019 
.081 

.044 .018 
.056 

.059 .035 
.089 

.057 .036 
.077 

.045 .025 
.081 

.044 .020 
.060 

1000 20 .019 .004 
.052 

.029 .011 
.051 

.041 .029 
.052 

.040 .030 
.051 

.045 .032 
.057 

.040 .030 
.049 

.038 .024 
.052 

.037 .027 
.045 

 40 .017 .006 
.037 

.033 .019 
.055 

.037 .026 
.049 

.036 .027 
.048 

.046 .033 
.060 

.042 .033 
.050 

.036 .024 
.049 

.034 .024 
.043 

 80 .017 .001 
.038 

.035 .022 
.052 

.031 .019 
.047 

.036 .018 
.052 

.041 .020 
.054 

.042 .029 
.049 

.031 .017 
.045 

.035 .019 
.043 

2000 20 .015 .004 
.030 

.028 .011 
.048 

.034 .023 
.044 

.036 .034 
.040 

.035 .028 
.048 

.035 .025 
.034 

.031 .021 
.044 

.031 .023 
.031 

 40 .017 .002 
.038 

.035 .025 
.057 

.033 .023 
.050 

.033 .025 
.039 

.036 .027 
.053 

.033 .029 
.040 

.031 .022 
.050 

.029 .024 
.035 

 80 .018 .004 
.044 

.031 .009 
.056 

.030 .020 
.050 

.029 .025 
.037 

.035 .025 
.054 

.032 .025 
.046 

.029 .020 
.050 

.027 .021 
.040 

 
N : Number of examinees 
n : Number of items 

 



 Nonparametric test of parametric model fit   26 

 

Table 3.  MAD 
 

  2PL MMLE Kernel Smoothing Isotonic Regression Smooth Isotonic Regression 

N n Model 

Fitting

Min. 

Max. 

Nonmodel 

 Fitting 

Min. 

Max.

Model 

Fitting

Min. 

Max.

Nonmodel 

Fitting 

Min. 

Max. 

Model 

Fitting

Min. 

Max.

Nonmodel 

Fitting 

Min. 

Max.

Model 

Fitting

Min. 

Max. 

Nonmodel  

Fitting 

Min. 

Max. 

250 20 .030 .006 
.061 

.043 .030 
.063 

.048 .029 
.080 

.047 .032 
.064 

.059 .033 
.085 

.054 .039 
.066 

.043 .024 
.061 

.044 .031 
.061 

 40 .030 .008 
.080 

.041 .016 
.048 

.049 .027 
.10 

.047 .024 
.065 

.056 .033 
.085 

.058 .038 
.082 

.042 .022 
.082 

.045 .018 
.068 

 80 .029 .001 
.072 

.037 .025 
.057 

.044 .018 
.087 

.045 .020 
.058 

.056 .032 
.095 

.051 .040 
.068 

.039 .014 
.082 

.042 .023 
.059 

500 20 .024 .006 
.056 

.026 .011 
.039 

.043 .018 
.072 

.032 .015 
.047 

.046 .031 
.074 

.038 .026 
.051 

.034 .014 
.065 

.028 .015 
.043 

 40 .017 .004 
.051 

.033 .019 
.045 

.034 .016 
.068 

.038 .021 
.052 

.043 .029 
.058 

.045 .036 
.057 

.032 .019 
.054 

.036 .025 
.047 

 80 .015 .004 
.064 

.028 .011 
.058 

.036 .014 
.068 

.036 .014 
.050 

.048 .028 
.076 

.045 .029 
.061 

.037 .020 
.067 

.037 .015 
.055 

1000 20 .016 .004 
.044 

.024 .010 
.044 

.033 .023 
.042 

.032 .025 
.050 

.037 .025 
.049 

.031 .023 
.040 

.031 .020 
.045 

.028 .021 
.037 

 40 .015 .005 
.034 

.027 .016 
.049 

.029 .020 
.038 

.030 .021 
.042 

.037 .026 
.049 

.035 .027 
.044 

.029 .019 
.040 

.029 .019 
.038 

 80 .015 .001 
.033 

.028 .012 
.046 

.025 .013 
.043 

.029 .018 
.042 

.032 .018 
.046 

.034 .021 
.052 

.025 .013 
.038 

.028 .016 
.046 

2000 20 .014 .004 
.025 

.022 .008 
.037 

.026 .019 
.041 

.029 .023 
.033 

.028 .023 
.041 

.028 .020 
.029 

.024 .019 
.039 

.025 .018 
.027 

 40 .014 .002 
.032 

.027 .019 
.039 

.027 .017 
.041 

.026 .019 
.035 

.029 .020 
.043 

.026 .021 
.031 

.023 .015 
.041 

.023 .016 
.029 

 80 .016 .003 
.039 

.026 .007 
.049 

.024 .015 
.039 

.024 .019 
.031 

.028. .016 
.044 

026 .019 
.038 

.023 .013 
.039 

.022 .017 
.033 

 
N : Number of examinees 
n : Number of items 
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Table 4.  Type I Probability and Power of RISE 
 
  Kernel Smoothing Isotonic Regression Smooth Isotonic Regression 
  Model Fitting Nonmodel Fitting Model Fitting Nonmodel Fitting Model Fitting Nonmodel Fitting 

N N Type I 
Prob. 

Min. 
Max. 

Mean 
(Std.) 

Power Min. 
Max. 

Mean 
(Std.) 

Type I 
Prob. 

Min. 
Max. 

Mean 
(Std.) 

Power Min. 
Max. 

Mean 
(Std.) 

Type I 
Prob. 

Min. 
Max. 

Mean 
(Std.) 

Power Min. 
Max. 

Mean 
(Std.) 

250 20 .0000 .033 
.092 

.067 
(.020) 

.5000 .043 
.083 

.156 
(.031) 

.1250 .043 
.105 

.075 
(.017) 

.7500 .043 
.083 

.171 
(.030)

.0000 .033 
.080 

.057 
(.003) 

.7500 .040 
.063 

.161 
(.031) 

 40 .0000 .034 
.107 

.063 
(.019) 

.8750 .029 
.077 

.157 
(.031) 

.0313 .041 
.099 

.073 
(.016) 

1.000 .050 
.103 

.176 
(.029)

.0313 .026 
.087 

.053 
(.019) 

1.000 .029 
.078 

.165 
(.030) 

 80 .0469 .021 
.121 

.059 
(.018) 

.9375 .024 
.076 

.150 
(.028) 

.0469 .042 
.107 

.072 
(.015) 

.8750 .050 
.093 

.173 
(.026)

.0781 .017 
.097 

.051 
(.017) 

.9375 .027 
.068 

.160 
(.028) 

500 20 .0625 .029 
.088 

.052 
(.013) 

1.000 .021 
.057 

.149 
(.020) 

.0625 .039 
.096 

.057 
(.011) 

1.000 .032 
.061 

.159 
(.02) 

.1250 .017 
.085 

.046 
(.012) 

1.000 .018 
.052 

.154 
(.021) 

 40 .0313 .024 
.086 

.047 
(.013) 

1.000 .025 
.063 

.152 
(.022) 

.0000 .038 
.070 

.057 
(.011) 

1.000 .043 
.068 

.164 
(.021)

.0000 .022 
.060 

.044 
(.013) 

1.000 .032 
.057 

.158 
(.022) 

 80 .0625 .019 
.081 

.046 
(.012) 

1.000 .018 
.056 

.152 
.(.022)

.0469 .035 
.089 

.057 
(.011) 

1.000 .036 
.077 

.166 
(.022)

.0313 .025 
.081 

.043 
(.012) 

1.000 .020 
.060 

.159 
(.022) 

1000 20 .0000 .029 
.052 

.042 
(.010) 

1.000 .030 
.051 

.148 
(.015) 

.0000 .032 
.057 

.047 
(.008) 

1.000 .030 
.049 

.154 
(.015)

.0000 .024 
.052 

.039 
(.009) 

1.000 .027 
.045 

.151 
(.015) 

 40 .0000 .026 
.049 

.036 
(.009) 

1.000 .027 
.048 

.153 
(.015) 

.0938 .033 
.060 

.045 
(.008) 

1.000 .033 
.050 

.160 
(.014)

.0313 .024 
.049 

.035 
(.008) 

1.000 .024 
.043 

.156 
(.015) 

 80 .0781 .019 
.047 

.034 
(.008) 

1.000 .018 
.052 

.152 
(.014) 

.0313 .020 
.054 

.044 
(.008) 

1.000 .029 
.049 

.160 
(.013)

.0469 .017 
.045 

.035 
(.008) 

1.000 .019 
.043 

.156 
(.014) 

2000 20 .0625 .023 
.044 

.036 
(.007) 

1.000 .034 
.040 

.148 
(.009) 

.0000 .028 
.048 

.038 
(.006) 

1.000 .025 
.034 

.151 
(.009)

.0625 .021 
.044 

.033 
(.007) 

1.000 .023 
.031 

.149 
(.009) 

 40 .0313 .023 
.050 

.033 
(.006) 

1.000 .025 
.039 

.152 
(.009) 

.0313 .027 
.053 

.036 
(.006) 

1.000 .029 
.040 

.155 
(.009)

.0313 .022 
.050 

.030 
(.006) 

1.000 .024 
.035 

.153 
(.009) 

 80 .0625 .020 
.050 

.031 
(.006) 

1.000 .025 
.037 

.155 
(.037) 

.1094 .025 
.054 

.035 
(.005) 

1.000 .025 
.046 

.157 
(.009)

.0938 .020 
.050 

.029 
(.006) 

1.000 .021 
.040 

.156 
(.009) 

 
N : Number of examinees 
n : Number of items 
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Table 5.  Type I Probability and Power of MAD 
  
  Kernel Smoothing Isotonic Regression Smooth Isotonic Regression 
  Model Fitting Nonmodel Fitting Model Fitting Nonmodel Fitting Model Fitting Nonmodel Fitting 

N N Type I 
Prob. 

Min. 
Max. 

Mean 
(Std.) 

Power Min. 
Max. 

Mean 
(Std.) 

Type I 
Prob. 

Min. 
Max. 

Mean 
(Std.) 

Power Min. 
Max. 

Mean 
(Std.) 

Type I 
Prob. 

Min. 
Max. 

Mean 
(Std.) 

Power Min. 
Max. 

Mean 
(Std.) 

250 20 .0000 .029 
.080 

.054 
(.018) 

.7500 .032 
.064 

.147 
(.033)

.1250 .033 
.085 

.060 
(.013) 

.7500 .039 
.066 

.152 
(.032)

.0000 .024 
.061 

.047 
(.016) 

.7500 .031 
.061 

.148 
(.033) 

 40 .0625 .027 
.10 

.050 
(.017) 

.8750 .024 
.065 

.148 
(.032)

.0313 .033 
.085 

.058 
(.014) 

.7500 .038 
.082 

.156 
(.029)

.0313 .022 
.082 

.043 
(.016) 

.7500 .018 
.068 

.150 
(.031) 

 80 .0313 .018 
.087 

.046 
(.016) 

.8750 .020 
.058 

.140 
(.029)

.0469 .032 
.095 

.058 
(.013) 

.8750 .040 
.068 

.150 
(.026)

.0469 .014 
.082 

.042 
(.015) 

.9375 .023 
.059 

.142 
(.028) 

500 20 .0625 .018 
.072 

.041 
(.011) 

1.000 .015 
.047 

.141 
(.021)

.0625 .031 
.074 

.046 
(.009) 

1.000 .026 
.051 

.143 
(.020)

.1250 .014 
.065 

.037 
(.010) 

1.000 .015 
.043 

.141 
(.021) 

 40 .0313 .016 
.068 

.037 
(.012) 

1.000 .021 
.052 

.142 
(.023)

.0000 .029 
.058 

.046 
(.009) 

1.000 .036 
.057 

.145 
(.022)

.0000 .019 
.054 

.035 
(.011) 

1.000 .025 
.047 

.143 
(.022) 

 80 .0469 .014 
.068 

.036 
(.011) 

1.000 .014 
.050 

.142 
(.023)

.0781 .028 
.076 

.046 
(.009) 

1.000 .029 
.061 

.146 
(.022)

.0938 .020 
.067 

.035 
(.010) 

1.000 .015 
.055 

.143 
(.023) 

1000 20 .0000 .023 
.042 

.033 
(.008) 

1.000 .025 
.050 

.141 
(.016)

.0000 .025 
.049 

.037 
(.007) 

1.000 .023 
.040 

.141 
(.016)

.0000 .020 
.045 

.031 
(.008) 

1.000 .021 
.037 

.141 
(.016) 

 40 .0313 .020 
.038 

.029 
(.008) 

1.000 .021 
.042 

.142 
(.015)

.0938 .026 
.049 

.035 
(.006) 

1.000 .027 
.044 

.143 
(.015)

.0625 .019 
.040 

.028 
(.007) 

1.000 .019 
.038 

.142 
(.016) 

 80 .0313 .013 
.043 

.027 
(.007) 

1.000 .018 
.042 

.141 
(.015)

.0156 .018 
.046 

.036 
(.006) 

1.000 .021 
.052 

.143 
(.015)

.0156 .013 
.038 

.028 
(.007) 

1.000 .016 
.046 

.141 
(.015) 

2000 20 .0625 .019 
.041 

.030 
(.006) 

1.000 .023 
.033 

.139 
(.010)

.0000 .023 
.041 

.030 
(.005) 

1.000 .020 
.029 

.139 
(.010)

.0625 .019 
.039 

.027 
(.006) 

1.000 .018 
.027 

.139 
(.010) 

 40 .0313 .017 
.041 

.026 
(.005) 

1.000 .019 
.035 

.140 
(.010)

.0313 .020 
.043 

.028 
(.005) 

1.000 .021 
.031 

.140 
(.010)

.0625 .015 
.041 

.024 
(.005) 

1.000 .016 
.029 

.140 
(.010) 

 80 .0625 .015 
.039 

.024 
(.005) 

1.000 .019 
.031 

.141 
(.010)

.0625 .016 
.044 

.028 
(.004) 

1.000 .019 
.038 

.142 
(.010)

.0781 .013 
.039 

.023 
(.005) 

1.000 .017 
.033 

.141 
(.010) 

 
N : Number of examinees 
n : Number of items 
 
 


